
59

Winter2021

A Knowledge Graph Data Model and Query Language

Kenneth Baclawski

Northeastern University

Abstract

An increasing amount of data is now available on public and private sources.
Furthermore, the types, formats and number of sources of data are also in-
creasing. The data sources have many different levels and types of structur-
ing. Techniques for extracting, processing and analyzing such data have been
developed in the last few years for managing this bewildering variety based
on a structure called a knowledge graph. In this article, a new knowledge
graph data model featuring formal reification is introduced and specified
mathematically. This data model has many advantages compared with exist-
ing data models that have been used for representing graph structures. One
important advantage is that all graph edges are reified, which can reduce the
cost and complexity of storage and retrieval for knowledge graphs that have
rich semantics, such as provenance, units of measure, and uncertainty speci-
fications. In spite of the added capabilities of this knowledge graph data
model, one can efficiently store knowledge graphs in existing triple stores,
and existing tools can be used with only minor modifications. This article
also introduces a new data language, called KGSQL, which is specifically
designed for the new knowledge graph data model. Both the syntax and the
denotational semantics of KGSQL are specified formally.

Introduction

THE NOTION OF A KNOWLEDGE GRAPH (KG) has emerged in the last few
years to be an important semantic technology and research area. As struc-
tured representations of semantic knowledge that are stored in a graph, KGs
are lightweight versions of semantic networks that scale to massive datasets
such as the entire World Wide Web. Industry has devoted a great deal of
effort to the development of knowledge graphs, and they are now critical to
the functions of intelligent virtual assistants such as Siri and Alexa. Some
of the research communities where KGs are relevant are Ontologies, Big
Data, Linked Data, Open Knowledge Network, Artificial Intelligence, Deep
Learning, and many others.

A KG is defined to be a labeled multigraph that has the following
mathematical definition (Baclawski et al., 2020):

60

Washington Academy of Sciences

A node- and edge-labeled multigraph is an 8-tuple
,, , , , , ℓ , ℓ such that
1. V is a set of nodes, and E is a set of edges.
2. The functions : → and : → specify the source and target
nodes of the edges.

3. ΣV is a set of node labels, and ΣE is a set of edge labels.
4. The functions ℓ: → and ℓ: → specify the labels of the
nodes and edges.

In the definition above V and E need not be disjoint. This led to my
proposal that it would be advantageous if E were a subset of V (Baclawski,
2021). In other words, every edge of the graph should itself be reified as a
node of the graph. This article elaborates my proposal, explaining the ra-
tionale for introducing a new data model and a new data language; and for-
mally specifying them.

We begin in Section 2 with the terminology for knowledge graphs
that will be used. The many advantages of reifying the edges of a graph as
nodes are presented in Section 3. There are other data models that have been
adapted for KGs as well as many data languages. There are too many to be
adequately covered in this article, but only a few are directly relevant to the
aims of the work developed in this article. These data models and languages
are reviewed briefly in Section 4. Our new data model is called the
knowledge graph data model (or more briefly, the KG model). It formally
reifies all edges, so that it has the advantages described in Section 3. We
also introduce a data language that is designed for the new KG model. Our
new data language is called the knowledge graph system query language
(KGSQL). Both our new data model and our new data language are pre-
sented in Section 5. The technical details of the formal specifications of the
KG model and KGSQL are given in three appendices:

1. The denotational semantics of KGSQL is specified in Appendix A.
Denotational (or compositional) semantics is useful for specifying
how to program an implementation of a language such as KGSQL.

2. The KG model is specified in the Distributed Ontology, Modeling,
and Specification LanguageTM in Appendix B. The specification of
the KG model uses the notion of an institution that was introduced
by Goguen and Burstall as a means of systematizing and relating
different logical systems (Goguen and Burstall, 1983). Institutions

61

Winter2021

depend on the mathematical notions of category and functor so a
brief introduction to categories and functors is also presented.

3. The formal grammar of KGSQL is in Appendix C. A parser and
compiler for KGSQL queries was implemented in Java to show that
the KGSQL language is consistent. The parser and compiler are
available on request from the author.

The article ends with a Conclusion and Acknowledgments.

Knowledge Graph Terminology

The most common terminology for KGs is taken from the Resource
Description Framework (RDF). This framework was developed to represent
metadata on the Web; however, it is now being used for representing infor-
mation of any kind. DF is sometimes regarded as being a specific XML
representation for data; but RDF is, in fact, a data model for graph data.
There are many representation languages for RDF data, all of which use the
same RDF data model, most of which do not use XML. For example JSON-
LD uses JSON to represent KGs.

As its name suggests, RDF is used to represent information about
resources. RDF can be used to specify properties of resources and relation-
ships between resources. A resource is specified using either an IRI or a
blank node. An IRI is a universally unique identifier of a specific resource.
A blank node specifies that a resource exists without explicitly naming it.
A property of a resource is specified with a literal which can be typed or can
be tagged as being in a particular natural language. In RDF, properties and
relationships are specified with statements. Each statement specifies a sub-
ject, a predicate, and an object. Because every statement consists of three
components, statements are also called triples. The subject and predicate
are resources, and the object can be either a resource or a literal. We will
write RDF statements by using angle brackets. Note that RDF uses the same
term for properties and relationships; both are called "properties.''

The Web Ontology Language (OWL) is a family of languages for
representing ontologies. OWL is built on RDF and adds many new features
and distinctions to the notions in RDF. For example OWL distinguishes re-
lationships from properties. The former are called ObjectProperties and the
latter are called DatatypeProperties.

62

Washington Academy of Sciences

An important relationship between resources is the one that specifies
the class of a resource. For example to specify that George is a person, one
might use the statement <:George rdf:type :Person>. The colons are used to
specify the prefixes of resources. IRIs can be very long, so it is useful to
have a mechanism for declaring abbreviations. Note that a prefix can be the
empty string. Because the type relationship is so common, we will use a
simpler notation for it; namely, [:George :Person].

It is often useful to focus on a subset of a graph, especially when the
graph is very large. The mathematical notion for this is called a subgraph.
More precisely, a subgraph of a graph G is another graph H formed from a
subset of the vertices and edges of G. The vertices of H must include all
endpoints of the edges of H, but may also include additional vertices of G.

An edge-induced subgraph of a graph G is a subgraph that does not
have any additional vertices, i.e., it only has vertices that are endpoints of
at least one edge. The RDF standard has a notion of a named graph that
implements an edge-induced subgraph. The name of a named graph is a
blank node or IRI that can be used in RDF statements. Within an RDF da-
tabase, there can be any number of named graphs. Each RDF statement in
an RDF database must specify the named graph to which the RDF statement
belongs. Consequently, an RDF statement is stored using a 4-tuple or quad.
In spite of this, an RDF database is usually called a "triple store."

Advantages of Reifying Statements

While RDF can be used to represent KGs, it is not a perfect match.
This section presents a number of examples for which a data model where
all statements are reified would have significant advantages.

Higher Order Relations

One of the controversial issues of RDF is that it only has native sup-
port for binary relationships. This issue has been addressed in more recent
frameworks, and these are discussed in Section 4. In RDF relationships with
higher arity (e.g., records) must be synthesized using properties and binary
relationships. For example suppose that one wishes to implement the classic
Suppliers and Parts relational database using RDF ("Suppliers and Parts",
2021). This database has three tables: Supplier, Part, and Shipment. Each
record in the Supplier and Part tables is implemented by assigning a unique
IRI to each supplier and part, and by asserting an RDF statement for each

63

Winter2021

non-primary key attribute. The only table that is problematic is the Ship-
ment table. This table has three columns: one each for the supplier and part,
and one for the quantity of the shipment. An RDF property cannot be used
to represent this table because of the third column. For example suppose
that the supplier IRI is :supplier8, the part IRI is :part25, the quantity
shipped is 300, and the RDF property relating them is :shipment. Then the
RDF statement <:supplier8 :shipment :part25> asserts that the supplier
ships the part, but does not specify the quantity shipped. To specify the
quantity shipped as well as any other attributes of the shipment, one must
reify the RDF statement in some way. The standard technique for RDF rei-
fication is to assert the following statements:

<b rdf:type rdfs:Statement>
<b rdfs:subject :supplier8>
<b rdfs:predicate :shipment>
<b rdfs:object :part25>

where b is either a blank node or an IRI that is unique for the reified RDF
statement. The quantity may now be specified using the RDF statement <b
:quantity "300"^^xsd:int>.

While this solves the problem of higher arity relations, those who
have used languages that natively support higher relationship arities find the
RDF limitation to binary relationships to be awkward for a number of rea-
sons. Aside from the inefficiency of expanding a single statement into four
statements, queries are now more complicated, especially if one must deal
with many relationships that have been reified.

Another complication of reifying an RDF statement is that there is
no connection between a statement and a reification of the statement, as the
two are independent. If some statements of a relationship have been reified
while others have not been reified, then queries, updates and inference rules
will be much more complicated. This significantly undermines one of the
supposed advantages of the RDF data model; namely, the claimed ease with
which one can introduce new properties and relations. By comparison, it is
relatively easy to add new columns to a relational database table without
any need to update any existing queries or updates.

Yet another problem with the reification of an RDF statement is that
the domain and range of a property do not apply to the reification of state-
ments whose rdf:predicate is that property. One can specify domain and

64

Washington Academy of Sciences

range axioms for a reification with OWL, but not with RDF, and the OWL
axioms are relatively complicated.

Literals

Another example of an issue with RDF is that literals are not re-
sources, so one cannot specify properties of literals. For example
["Hello, world!" rdfs:Literal] is necessarily true, but one cannot assert this
fact using an RDF statement. It is also not possible to specify the datatype
of a literal using a statement, so a separate syntax is employed to specify
the datatype of a literal. For example "15"^^xsd:int specifies the number
fifteen. Similarly, the (human) language of a text string is specified with a
separate syntax. For example "hello"@en specifies that the language of the
string "hello" is English.

One way to specify properties of literals, other than the datatype or
language, is to reify the literal. A reification of a literal is called a compound
literal, and its type is rdfs:CompoundLiteral. The properties of a compound
literal can include its datatype and language as well as other properties such
as directionality (i.e., left-to-right or right-to-left), unit of measurement, etc.
The value of such a reified literal is specified by the rdf:value property.
While this solves the problem of specifying properties of literals with RDF,
there are now two different ways to specify a property value: directly with
the literal or indirectly with the reification of the literal. The disadvantages
of this situation are then similar to the ones already mentioned in Section
3.1.

Incidentally, RDF has a non-standard extension that allows literals
to be used in any slot of a statement, including the subject and predicate
slots. However, this does not resolve the problem of adding properties to
literals. The same string might be in many languages, might have various
measurement units dependent on context, and so on.

Incremental Development

It is a common practice to develop a complex information system by
using an iterative process to provide incremental improvements (Darrin and
Devereux, 2017). KGs can be very complex, and there are significant prac-
tical reasons for developing them incrementally, starting from a KG repre-
sented in RDF with a minimal schema or no schema at all, and later gradu-
ally improving the schema (Berg-Cross, 2021). However, one problem with

65

Winter2021

such an approach is that improving the KG with an improved schema will
often require a wholesale restructuring of the KG to a new version that is
not backwardly compatible with earlier versions. Sections 3.1 and 3.2 give
examples in which improving the schema requires changing the structure of
the KG. For example, the initial KG might have statements with properties
such as distances, speeds, and weights, expressed as raw numbers. Adding
appropriate units to these statements requires designing a schema that al-
lows for specifying the unit of measure for such statements, as well as other
properties such as uncertainty and provenance. Reifying all statements al-
lows one to incrementally add such properties to statements without any
restructuring. While the KG model cannot entirely eliminate the need for
KG restructuring during an incremental development process, it can make
it much easier in many important cases.

Another advantage of the KG model is that it reduces the number of
possible designs for incrementally adding properties to statements and col-
lections of statements. While one can easily design an RDF schema that will
allow one to add units of measure to a statement, there are several ways to
do this, as noted in Section 3.2. This can hamper interoperability as well as
incremental development efforts that wish to incorporate existing KGs
(Berg-Cross, 2021). Since the KG model reifies edges, there are fewer de-
signs for adding properties to statements, and they are more easily accom-
modated during incremental development and interoperation. For example,
two KGs might use different properties for specifying a unit of measure, but
the basic structure is the same. Again, the KG model does not entirely solve
this problem, but it could make it easier to solve.

Graph Languages with Edge Quoting and Reification

While there are many graph query languages, only a few have mech-
anisms for simplifying edge reification. In this section we review these lan-
guages.

The Property Graph Query Language (PGQL) is a graph query lan-
guage built on top of SQL. The purpose PGQL is to extend SQL to have
graph pattern matching capabilities (PGQL, 2021). A property graph is a
graph in the usual sense of nodes and edges, such that nodes and edges can
have properties. A PGQL schema is similar to an SQL schema except that
tables are either vertex tables or edge tables. Each edge table has a source

66

Washington Academy of Sciences

table and a destination table. The difference between the PGQL and KG
models is that in the KG model all statements, including properties, are re-
ified. Another difference is that the type of a KG resource is specified with
a statement, while in PGQL the type of a resource is the table it belongs to.
So a KG resource can have many types, and a resource can change its type.
Changing the table of an entity is not meaningful in SQL and PGQL.

The RDF-star is an unofficial draft data model that is intended to
simplify specifying RDF reification (RDF-star, 2021). The corresponding
data language is SPARQL-star. The feature that RDF-star adds to RDF is
the ability to quote a triple. Quoted triples are specified in double angle
brackets. Quoting a triple is not the same as the reification of the triple. If
the same quoted triple appears multiple times, then all of them are neces-
sarily the same. By contrast, the same triple can be reified more than once
in the KG model, and each reification will have its own triple identifier. To
associate an identifier with a quoted triple, one must specify the identifier
with another triple. One can then use this identifier in other triples. While
this does reify the triple, there is now a distinction between the quoted triple
and its reification. Moreover, the property that is used to reify the quoted
triple is not unique. Indeed, within the same RDF-star store one could reify
the same triple using more than one property.

One can nest RDF-star triples to any depth. All of the triples in such
an expression are quoted except for the outermost triple. One cannot have
infinite nesting of RDF-star triples, so that it appears to be impossible to
specify a circular structure. However, if one reifies the quoted RDF-star tri-
ples, then one can define circular structures.

The Knowledge Graph Data Model and System Query Language

A common feature of the issues with RDF discussed in Section 3 is
the use of reification to resolve the issue. This suggests that a language
where reification is provided in a seamless manner would have many ad-
vantages. While some languages have attempted to deal with this issue to
some degree, as discussed in Section 4, it might be worthwhile to consider
a more dramatic approach; namely, reify every statement and introduce a
data language that leverages the reifications. We call this language KGSQL,
and specify both the KG model and KGSQL in this section along with some
applications.

67

Winter2021

The Knowledge Graph Data Model

We define the KG model by specifying a concrete realization of the
notion of a knowledge graph as defined in Section 1. This realization uses
ordinary set theory. The category theoretic specification is given in Appen-
dix B.

We start by specifying the different kinds (or, more precisely, sorts)
of the nodes that can be in a knowledge graph as follows:

• GId is the set of all possible global resource identifiers;
• LId is the set of all possible local resource identifiers;
• Lit is the set of literal strings;
• Num is the set of double-precision numbers;
• Bool is the set of Boolean values;
• ⊥ denotes the undefined result; and
• V is the set of all possible variables.

It is assumed that the setsGId, LId, Lit, Num, Bool, and V are disjoint
and do not contain ⊥, and that V is infinite. The union ∪ is the set
of resource identifiers and will be written Id. The union ∪ ∪ ∪
 will be written Res.

A knowledge graph is a relation ⊆ × × × such
that if ,, , , ′,′, ′, ∈ then s=s', p=p' and o=o'. In other words
the fourth component is a unique column of the relation. The elements of a
KG are called statements, and the components are called the subject, pred-
icate, object, and statement identifier, respectively.

The set of all elements of Res that occur as one or more of the com-
ponents of an edge of a knowledge graph G will be written G.node. The
type of a node that is not a statement identifier is specified by a statement
whose property is rdf:type. The type of a statement is its property (i.e., its
edge label), and it is not necessary to have an explicit edge in G that speci-
fies this fact. A node can have more than one type. Table 1 shows the cor-
respondence between the terms of a multigraph and the terms of a KG. In
this table, FinSet(S) is the collection of all finite subsets of a set S.

68

Washington Academy of Sciences

Multigraph Knowledge Graph

V G.node

E G

s The subject of a statement

t The object of a statement

ΣV FinSet(G.node)

ΣE FinSet(G.node)

ℓV The types or properties of a node

ℓE The properties of a statement

Table 1: Relationship between multigraph and knowledge graph terminol-
ogy

The realization of the notion of a KG not only defines the KG model
it also gives an example of an implementation; namely, one can implement
a KG with a single relational table with four columns. The fourth column is
the statement identifier. Another implementation is to store a KG in a triple
store. This is possible because, in practice, triple stores actually store quads.
The fourth component is the name of the named graph. The fourth compo-
nent could store both the name of the named graph and the statement iden-
tifier by concatenating the name of the named graph with a unique identifier
for the statement within the named graph, separating the concatenated
strings with a special character. In other words the statement identifier in-
cludes the name of the named graph to which it belongs. Of course this
strategy requires that the statement identifiers have a particular form.

The Query and Update Languages

We now discuss the syntax of KGSQL. The syntax was designed to
be as similar as possible to SPARQL; indeed, most SPARQL commands
should also be KGSQL commands. The most important additional feature
is the ability to explicitly reference the identifier of any statement. KGSQL
supports SELECT, ASK, CONSTRUCT, INSERT, and DELETE com-
mands. The SELECT command finds all collections of edges in the KG that
satisfy the WHERE clause and returns the selected variables. The ASK
command is the same as the SELECT command except that it only returns

69

Winter2021

whether there were any matching edges. The ASK command can be used as
a subquery in the where clause of another command. The CONSTRUCT
command is the same as the SELECT command except that the selected
variables are used to specify a set of edges in a graph which are then re-
turned. The INSERT command is the same as the CONSTRUCT command
except that the constructed edges are stored in the KG database. The IN-
SERT command can modify edges in the KG database so that the INSERT
command is also an update command. The DELETE command is the same
as the SELECT command except that the variables that are returned are the
statement identifiers of the edges that are removed from the KG database.

TheWHERE clause of any command consists of patterns and filters.
A pattern specifies a subject, predicate and object, which can be variables
or constants. A variable is indicated with an initial question mark. CON-
STRUCT and INSERT commands use patterns to specify the edges to be
constructed or inserted.

As in SPARQL, some abbreviations are supported. If several pat-
terns have a common subject, then one can specify the subject followed by
a sequence of predicate-object pairs separated by semicolons. If several pat-
terns have the same subject and predicate, then they can be followed by a
sequence of objects separated by commas. Unlike SPARQL, the subject and
object can be bracketed expressions which specify an instance and its class,
either or both of which can be a variable. The class can be a pipe-delimited
sequence of classes, denoting a union of the classes. A union does not allow
variables. A bracketed expression can specify a constant or variable in be-
tween the instance and the class (or class union), which represents the state-
ment identifier of the type statement. The predicate can also be a bracketed
expression, but it cannot specify a third slot in the middle. The bracketed
expression of a predicate specifies the statement identifier and the property.
In other words it is as if properties are classes whose instances are state-
ments.

Patterns are a textual notation for specifying KGs. Another way to
specify a KG is with a drawing of the nodes and edges. Since the edges are
directed from the subject to the object, one uses arrows for edges. The prop-
erty of an edge is shown next to the edge. Since edges are also nodes, it is
possible for an edge to start at another (or the same) edge and also to end at

70

Washington Academy of Sciences

an edge. For example the Suppliers and Parts example in Section 3.1 could
be specified in the KG model as follows:

:supplier14 [?e :shipment] :part34 .
?e :quantity ["500" xsd:decimal] .

and it could be drawn using the diagram in Figure 1.

Figure 1: The Suppliers and Parts Example

The Suppliers and Parts database is unrealistic. In practice one ship-
ment may include several parts but would always be to one customer on one
date, organized as an invoice. So it would be better to make the customer
the main attribute of a shipment as in Figure 2.

Figure 2: Example of an invoice

All the edges in Figure 2 are reified so one can easily add additional
information about each one as needed. For example one could add context
information such as provenance and uncertainty (Baclawski et al., 2018).
As another example, one could add rationales which could be used for the
purposes of explanation (Baclawski et al., 2019; Baclawski, 2020).

The reason for not allowing a middle slot in a bracketed expression
for the predicate is subtle. In the KG model, each statement is an instance

71

Winter2021

of its predicate. However, if the relationship between each statement and its
predicate were always reified, then this would entail an infinite sequence of
reifications. For example suppose that we have the statement :sup-
plier8 :name "QWPNW". Let :e1 be its statement identifier. The predicate
of the statement identified by :e1 is :name. So :e1 has the type :name. If
this fact is reified, then the statement :e1 rdf:type :name would have a state-
ment identifier. Suppose that :e2 is the statement identifier of
:e1 rdf:type :name. Then the predicate of :e2 is rdf:type. If this fact is rei-
fied, then :e2 rdf:type rdf:type would also have a statement identifier, and
so on, as drawn in Figure 3. The result is an infinite sequence of distinct
statement identifiers. Presumably, one could find a way to manage such in-
finite sequences, since they all have the same simple form, but it is simpler
to agree to omit them.

Figure 3: An infinite sequence of reifications

A pattern can specify a multiplicity for following paths in a KG. A
multiplicity is one or two integers or asterisks, representing the minimum
and maximum number of edges to follow. An asterisk represents an unlim-
ited number of edges. If there is one integer or asterisk, then the minimum
and maximum are the same. The multiplicity can be in one of two places in
a pattern. If the multiplicity is after the second slot, then the multiplicity
specifies that one should follow statement identifiers; and if the multiplicity
is after the third slot, then the multiplicity specifies following objects.For
example in the drawing in Figure 4, the pattern

72

Washington Academy of Sciences

:a prop ?x {6}

would set ?x to :b, and the pattern

:c prop {6} ?x

would set ?x to :d. This notation is analogous to the notation for array se-
lection in programming languages where it would look something like this:
x = c.prop[6].

Figure 4: Path following in a knowledge graph

A negative multiplicity goes in reverse (i.e., via the inverse relation-
ship). For example, the pattern

?x prop :b {-6}

would set ?x to :a, and the pattern

?x prop {-6} :d

would set ? x to :c.

If the maximum or minimum is an asterisk (i.e., unbounded), then
the result is a transitive closure.

The formal syntax of the initial version of KGSQL is in Appendix
C. Only the grammar is shown in Appendix C. The lexical rules were omit-
ted for simplicity. The full grammar is available at kgsql.org/KGSQL.g4.
The syntax notation is that of Antlr (Parr, 2014). Not all features of
SPARQL were included in the initial version KGSQL, since the initial

73

Winter2021

version is only a proof of concept. Other features of SPARQL will be added
in later versions.

Sequences

One of the advantages of reifying all statements is that one can con-
struct sequences (also called linked lists) much more easily and efficiently.
Moreover, one can specify sequences with any property as the sequence
property. In RDF, a sequence is specified using the built-in properties
rdf:first and rdf:rest, and the built-in resource rdf:nil. For example the se-
quence (:Kim :Greer :Qing) is specified with the following statements:

<a rdf:first :Kim>
<a rdf:rest b>
<b rdf:first :Greer>
<b rdf:rest c>
<c rdf:first :Qing>
<c rdf:rest rdf:nil>

In KGSQL, a sequence is specified like this:

c [a :prop] :Kim .
a [b :prop] :Greer .
b [c :prop] :Qing .

where :prop could be any property. Note that this sequence is circular and
that no notion of nil is necessary for nonempty sequences. Of course one
does require a way to specify an empty sequence, such as the built-in re-
source kgsql:empty. In KGSQL, the notation for this sequence is
[(:Kim :Greer :Qing) :prop]. The drawing for this sequence is shown in Fig-
ure 4.

Figure 4: Example of a three-element sequence

74

Washington Academy of Sciences

Comparison with SQL

In this section, we discuss how KGSQL differs from SQL, or more
precisely comparing the KG model with the relational model. Many com-
parisons of triple stores and the relational databases have been published,
such as (Comparison, 2013). These comparisons generally focus on prag-
matic issues of the use of different products rather than the conceptual dif-
ferences between the models. While a pragmatic focus is valuable, it might
also be worthwhile to consider the conceptual differences, and we do so in
the following.

One major conceptual difference between KGs and the relational
model is the way that entities are conceptualized. In a KG, the entities are
the nodes in the graph. In RDF entities are called resources and are specified
with IRIs. By contrast, the entities in the relational model are records (also
called rows or tuples). A record is specified with its primary key. To see
why this distinction is more than just a question of data representation, con-
sider how queries for the two models are mapped to the variables of predi-
cate logic. For the relational model, the variables represent records. In other
words, when one quantifies in the relational model (using either existential
or universal quantification), the quantification is over the records of a spe-
cific relation (or table). This is fundamental to any relational query lan-
guage. To borrow a term from programming languages, relational variables
are strongly typed. Indeed, in SQL, by default, the name of a variable is the
name of a table; non-default variable names are necessary only if a query is
quantifying over the same table more than once.

By contrast the variables of a KG query vary, in principle, over all
possible nodes of a graph. To the extent that a variable is typed at all, the
type constraint is just one more statement which is no more fundamental
than any other constraint. In particular a type constraint need not be imposed
at all, and if it is, then it is imposed explicitly. The relational model has no
such flexibility.

Some relational database systems maintain a rowid (also called a
"rid") that uniquely identifies each record in a table. This appears to be anal-
ogous to a statement identifier. However, while a rowid can be accessed in
a query, it is set and maintained by the database system. More importantly,
the database can change a rowid when a record is updated and can reuse the
rowid of a deleted record.

75

Winter2021

Another way to look at the distinction between the KG and relational
models is to treat a KG as being a single relation whose records are the
nodes and whose primary key is the node identifier. This single relation has
infinitely many multi-valued columns, one for every possible property or
relationship. This relation is not quite a relation in the classical sense be-
cause it has multi-valued columns, but many relational databases support
such columns. In any case, the example is only a conceptual one as it is not
at all practical, and it completely omits the reification of statements that is
fundamental to KGSQL.

A more practical and complete implementation of a KG with a rela-
tional database is to use a four-column table to represent the statements,
with an additional column to specify either a named graph identifier (for the
RDF data model) or a statement identifier (for the KG model). Let T(G) be
the table for a knowledge graph G. This implementation is more promising
than the previous one, and some products use this technique. However, it
would be misleading to view a KG as being T(G) or even being analogous
to T(G) as is commonly mentioned, such as in the Wikipedia article
(SPARQL, 2021). The difficulty with this analogy is that from a relational
point of view the entities of T(G) are the records of T(G), not the entries in
any of the columns of one of the records. This confusion is especially sig-
nificant for the RDF data model because RDF statements, which correspond
to the records of T(G), are never entities of the RDF data model. The dis-
tinction is not merely conceptual as it affects how one programs queries for
the RDF model compared with relational queries. In the relational model
one is iterating over records in tables while in the RDF model one is iterat-
ing over resources. It is somewhat less significant for the KGmodel because
the records of T(G) are always KG nodes and hence are entities, but there
will also be many other entities, so programming a KGSQL query will also
differ from programming an SQL query.

In summary the KG and relational models for data differ not only
pragmatically but also conceptually. The two models have different notions
of what an entity is in the model. As a result, the two models tend to have
different approaches to design, development, and employment. While the
RDF data model and the KG model are similar, the differences between
them are also likely to result in different approaches to design, development
and employment.

76

Washington Academy of Sciences

Conclusion and Future Work

We have developed a new data model specifically designed for
knowledge graphs. In this regard the development of the KG model is anal-
ogous to the development of the relational model by Codd and many others,
which was designed for relational (tabular) data (Codd, 1970). While the
KG model is designed for KGs, it is effective for representing data of other
kinds, such as hierarchical and tabular data. We have also developed
KGSQL, a data language designed for the KG model. KGSQL helps to re-
solve some of the disadvantages of existing data languages for KGs. Both
the KG model and the KGSQL language are formally specified, with the
details given in the appendices.

The KG model and KGSQL are concerned only with data, not the
schema. This has the advantage that the data and schema are separate con-
cerns. In principle a KG could have more than one schema; for example,
different schemas might be used by different communities for their own
purposes. That said, an interesting future direction for the work on the KG
model would be to develop a schema language for specifying semantics.
Ideally, the schema language would also use the KG model, so that the
schema could be written in KGSQL.

One of the most powerful insights of the KGmodel is that properties
(including relationships) are classes whose instances are statements. In
OWL, properties and classes are disjoint. In the KG model not only are
properties and classes not disjoint, but the properties are a subset of the clas-
ses. This idea makes it possible for properties to be domains and ranges of
other properties, thereby allowing more opportunities for specifying the se-
mantics of data expressed as KGs. An interesting future project would be to
develop this idea both practically and formally.

Acknowledgments

The author would like to thank Gary Berg-Cross, Ravi Sharma, Janet
Singer, Ram D. Sriram, and AndreaWesterinen for many helpful comments
that improved this article.

77

Winter2021

References

K. Baclawski (2020). Decision Rationales as Models for Explanations. In
J. Wash. Acad. Sci.106(4):107-124.

K. Baclawski (2021). Introduction to KGSQL: A Knowledge Graph Sys-
tem Query Language, July 7 2021. Retrieved 1 October 2021 from
https://bit.ly/3xocWEj.

K. Baclawski, M. Bennett, G. Berg-Cross, C. Casanave, D. Fritzsche, J.
Ring, T. Schneider, R. Sharma, J. Singer, J. Sowa, R.D. Sriram, A.
Westerinen and D. Whitten (2018). Ontology Summit 2018 Commu-
niqué: Contexts in Context. In Journal of Applied Ontol-
ogy13(3):181-200. IOS Press, The Netherlands. (July, 2018)

K. Baclawski, M. Bennett, G. Berg-Cross, D. Fritzsche, R. Sharma, J.
Singer, J. Sowa, R.D. Sriram, M. Underwood and D. Whitten (2019).
Ontology Summit 2019 Communiqué: Explanation. In Applied Ontol-
ogy. IOS Press, The Netherlands. DOI: 10.3233/AO-200226.

K. Baclawski, M. Bennett, G. Berg-Cross, D. Fritzsche, R. Sharma, J.
Singer, J. Sowa, R.D. Sriram, M. Underwood, and D. Whitten (2020).
Ontology Summit 2020 Communiqué: Knowledge Graphs. Applied
Ontology, 16(2):229-247, April 2020.

Comparison of triple stores vs relational databases (2013). Retrieved 2
October 2021 from https://bit.ly/3ooqIoV.

G. Berg-Cross (2021). Introduction to Harmonizing Definitions and the
EnvO Ontology. Retrieved 1 June 2021 from https://bit.ly/3pnkwdG.

E. Codd (1970). A Relational Model of Data for Large Shared Data
Banks. In Communications of the ACM 13 (6) 377-387.

M. Darrin and W. Devereux (2017). The agile manifesto, design thinking
and systems engineering. In Annual IEEE International Systems Con-
ference (SysCon), pages 1-5. IEEE.

J. Goguen and R. Burstall (1983). Introducing institutions. In Proc. Car-
negie Mellon Workshop on Logic of Programs, volume 164, pages
221-256.

D. Jurafsky and H.J. Martin (2000). Speech and language processing: an
introduction to natural language processing, computational linguis-
tics, and speech recognition. Upper Saddle River, N.J.: Prentice Hall.
ISBN 978-0-13-095069-7.

78

Washington Academy of Sciences

T. Parr (2014). Antlr website. Retrieved 2 October 2014 from
https://www.antlr.org.

The Property Graph Query Language (PGQL) website (2021). Retrieved
2 October 2021 from https://pgql-lang.org/.

RDF-star and SPARQL-star (2021). Draft Community Group Report 01
October 2021. Retrieved 2 October 2021 from
https://bit.ly/3F6ORX3.

Suppliers and Parts (2021). Wikipedia article. Retrieved 2 October 2021
from https://bit.ly/3B4wv6p.

Wikipedia article on SPARQL (2021). Retrieved 2 October 2021 from
https://bit.ly/3B4eXHC.

Appendix A Denotational Semantics

A KGSQL query is a collection of patterns (or more precisely, pattern in-
stances) and a collection of filters that constrain the results of a query. A
pattern is a statement where each of the components may be either a con-
stant or a variable. A constant is a resource identifier, string, number or
Boolean value. A result of a query is a function from a finite set of variables
to a constant. The result set of a query is a multiset of results. We now spec-
ify using denotational (compositional) semantics how to determine the re-
sult set of a query.

We begin with some mathematical notation in A.1. In A.2, the evaluation
of filter expressions is specified recursively, and in A.3, the semantics of a
query is defined.

A.1 Mathematical Background

In this section we will use the notation for KGs introduced in Section 5.1.
In particular, we use the set Res of all possible nodes that can be in a KG.

A result (of a query) is a function : → , where ⊂ is a finite set
of variables. The domain of a result is written . The domain of a
result can be empty, and there is a unique result with an empty domain (i.e.,
the empty function). The projection of a result : → to a subset ⊆
 is the restriction of to and is written . Two results : →
and : → are said to be compatible if they coincide on the intersec-
tion of their domains, i.e., ∀ ∈ ∩ , = . The join of

79

Winter2021

compatible results and is the unique function ℎ = ⨝: ∪ →
such that ℎ = and ℎ = .

Amultiset is a set that can have repeated elements.A result set S is a multiset
of results all of which share the same domain which is written dom(S). The
projection of a result set with domain W to a subset ⊆ is the multiset
 = {: → | ∈ } such that if several results become the
same after projection to U, then their multiplicities are summed. The join of
two result sets S and T is the multiset ⨝ = {⨝| ∈ and ∈
are compatible}. The join of results sets accounts for results that occur
more than once. This means that if ∈ has multiplicity m and if ∈
has multiplicity n, then the multiplicity of ⨝in⨝ is the product mn.

A pattern (or more precisely, a pattern instance) is a quadruple P = (s,p.o,e)
such that the four components are in ∪ , i.e., ,, , ∈ ∪ . The
set of variables that occur in a pattern P will be written var(P).We extend
a result set : → to all of ∪ by setting f(x) to x for every ∉
 . Similarly, we define f(P) for a pattern = ,, , to be
, , , . In other words, for each component of a pattern,
if the component is in dom(f) then apply f to the component; otherwise,
leave the component alone.

A pattern is the primary KGSQL query mechanism. Given a knowledge
graph G and pattern P, the semantics of P with respect to G is the result set

 = {: → | ∈ }

The syntax for a pattern = , , , in a KGSQL query is

s [e p] o

We will use the following notation for the semantics of a primary pattern in
a KGSQL query:

⟦s [e p] o⟧G = ,, , .

A.2 Query Filters

A filter is a Boolean expression that limits the result set of a query to contain
only the results that satisfy the filter expression. The evaluation of an ex-
pression expr with respect to a result f and knowledge graph G is written
, ,. Filter expressions in a KGSQL query use a typical syn-
tax, except that the logical operators (i.e., AND, OR and NOT) can be

80

Washington Academy of Sciences

specified using either infix operators or functions. The logical infix opera-
tors are left-associative short-circuit operators, whereas the logical func-
tions are not short-circuit operators. The evaluation of expressions is de-
fined recursively as follows.

1. ||. , =

true, if, , = true,
false, if, , = false and , , = false,
⊥, otherwise.

2. &&. , =

false, if, , = false,
true, if, , = true and , , = true,
⊥, otherwise.

3. For a binary operator op ∈ {=,!=},
op. ,

=
, ,op, , if both evaluations are defined,

⊥, otherwise.

4. For a binary operator op ∈ {<,>,<=,>=}, op. , =

, ,op, , if both evaluations are in,
, ,op, , if both evaluations are in,

⊥, otherwise.

5. For a binary operator op ∈ {+,-,*},
op. ,

=
, ,op, , if both evaluations are in,

⊥, otherwise.

6. ⁄ . , =

7. +. , = , ,.

8. −. , =
−, , if the evaluation is in,

⊥, otherwise.

81

Winter2021

9. !. , =
false, if, , = true,
true, if, , = false,
⊥, otherwise.

10. For a function g that can take n arguments,
, , . . . , , , =

11. For a variable ∈ , . , =
 if ∈ ,
⊥, otherwise.

12. For a constant ∈ , , , = .

13. For a WHERE clause W, ⟦ask⟧ , , =

true, if ⟦⟧ ≠ ∅,
false, if ⟦⟧ = ∅,
⊥, otherwise.

A.3 Query Semantics

The semantics of a KGSQL query is specified in this section. A query has
both query clauses and filter clauses. A filter clause is an expression in the
variables occurring in the query clauses. The filter expressions are evaluated
for each result of the query clauses, and only the results for which the filter
expressions all evaluate to true are returned. During this process, if a filter
expression is undefined, then the entire query is undefined.

The denotational semantics of a KGSQL query with respect to a knowledge
graph G is specified recursively below. The symbols s, p, o, e, r, and c are
elements of ∪ , and the symbols v and w are variables in V that do not
occur among the variables in the query.

1. ⟦s [e p] o⟧G = ,, ,

2. ⟦[r e c]⟧G = ⟦r [e rdf:type] c⟧G

3. For a finite subset {c1, c2, ..., cn}⊆Id, ⟦r e c1|c2|...|cn]⟧G = ∪i=1n⟦r e ci⟧G

82

Washington Academy of Sciences

4. For an integer m, ⟦s [e p] o {m}⟧G =
a) ∅, if m = 0,
b) ⟦s [e p] o⟧G, if m = 1, -1,
c) ⟦s [v1 p] w1⟧G⨝⨝⟦w1 [v2 p] w2⟧G ⨝⋯⨝ ⟦wm-1 [e p] o⟧G, if m >
1,

d) ⟦w1 [v1 p] o⟧G⨝ ⟦w2 [v2 p] w1⟧G⨝⋯⨝ ⟦s [e p] w-m-1⟧G, if m < -
1,

5. For integers m ≤ n, ⟦s [e p] o {m..n}⟧G = ∪i=mn⟦s [e p] o {i}⟧G

6. For an integer m, ⟦s [e p] o {m..*}⟧G = ∪i≥m⟦s [e p] o {i}⟧G

7. For an integer n, ⟦s [e p] o {*..n}⟧G = ∪i≤m⟦s [e p] o {i}⟧G

8. ⟦s [e p] o {*..*}⟧G = ∪i⟦s [e p] o {i}⟧G

9. For an integer m, ⟦s [e p] {m} o⟧G =
e) ∅, if m = 0,
f) ⟦s [e p] o⟧G, if m = 1, -1,
g) ⟦s [v1 p] w1⟧G⨝⨝⟦v1 [v2 p] w2⟧G ⨝⋯⨝ ⟦vm-1 [e p] o⟧G, if m > 1,
h) ⟦w1 [v1 p] o⟧G⨝ ⟦w2 [v2 p] v1⟧G⨝⋯⨝ ⟦s [e p] v-m-1⟧G, if m < -1,

10. For integers m ≤ n, ⟦s [e p] {m..n} o⟧G = ∪i=mn⟦s [e p] {i} o⟧G

11. For an integer m, ⟦s [e p] {m..*} o⟧G = ∪i≥m⟦s [e p] {i} o⟧G

12. For an integer n, ⟦s [e p] {*..n} o⟧G = ∪i≤m⟦s [e p] {i} o⟧G

13. ⟦s [e p] {*..*} o⟧G = ∪i⟦s [e p] {i} o⟧G

14. ⟦s p o⟧G = πvar{s,p,o}⟦s [v p] o⟧G

15. If the subject or object or both are bracketed expressions, then the result
set is obtained by join. For example, ⟦[s e c] p o⟧G = ⟦[s e c]⟧G⨝ ⟦s p o⟧G

16. For a set of clauses Q = {Q1, Q2, ..., Qn} as in cases (1) to (15),
⟦Q⟧G = ⟦Q1⟧G⨝ ⟦Q2⟧G⨝⋯⨝ ⟦Qn⟧G

17. For a set of clauses Q = {Q1, Q2, ..., Qn} and an expression expr in the
variables var(Q),

83

Winter2021

⟦Q . filter(expr)⟧G =
a) {f ∈ ⟦Q⟧G | eval(expr, f, G) = true}, if every evaluation is defined,
and

b) ⊥, if eval(expr, f, G) = ⊥ for any f ∈ ⟦Q⟧G

18. For a WHERE clause W consisting of a set of query clauses Q = {Q1,
Q2, ..., Qn}
and a sequence of filter expressions expr1, expr2, ..., exprn, in the
variables var(Q),
⟦W⟧G = ⟦Q . filter(expr1 && expr2 && ... && exprn)⟧G

9. For a WHERE clauseW and a nonempty set of variables v1, v2, ..., vn ∈
V,
⟦select v1, v2, ..., vn where W⟧G =
a) π{ v1, v2, ..., vn}⟦W⟧G, if ⟦W⟧G is defined
b) ⊥, if ⟦W⟧G = ⊥

Appendix B Category Theory and Institutions

A category is a labeled directed graph with an associative composition op-
eration. In this section, the notions of category and functor are defined using
computer science notation rather than the traditional notation from mathe-
matics.

Category theory abstracts the more concrete notions of function and func-
tion composition, which we now discuss because nearly the same notation
is used for category theory. For a set S, the identity function on S is denoted
1S. For a function : → , the domain of f is S and the codomain of f is T.
For sets S, T, U, and functions : → and : → , the composition of f
and g is a function ℎ: → such that for each element x in S, ℎ =
. The composition is written either ∘ or as f;g. The latter is
generally preferred by computer scientists because it is analogous to the no-
tation in most programming languages for the composition of successive
statements in a program. If F and G are sets of functions, the set of pairs of
functions of F and G that are composable will be written F⨝ G. In other
words, F⨝ G = {(f, g) | f ∈ F, g ∈ G, and the codomain of f is the same as
the domain of g}.

84

Washington Academy of Sciences

The notation for category theory differs from the notation for sets and func-
tions in a few ways. Instead of functions, one has morphisms. Instead of the
domain and codomain of a function, one speaks of the source and target of
a morphism. The notation for the composition of morphisms is the same as
the notation for functions, except that the formula for the composition need
not hold.

A category C consists of the following components:

1. A collection C.ob of objects.
2. A collection C.hom of morphisms.
3. A function C.src: C.hom➞ C.ob that specifies the source of each
morphism.

4. A function C.tar: C.hom➞ C.ob that specifies the target of each
morphism.

5. A function C.id: C.ob➞ C.hom that specifies the identity
morphism of each object.

6. A function C.comp: C.hom⨝ C.hom➞ C.hom that specifies
morphism composition such that composition is associative, and
the composition of an identity morphism with another morphism is
equal to the other morphism.

It is a common practice to specify category theory axioms and results using
commutative diagrams. A diagram of objects and morphisms is said to be
commutative when for every pair of objects in the diagram, the composition
of every path of morphisms from the first object to the other yields the same
morphism. These diagrams are a way of visualizing axioms and results us-
ing graphs. Both the nodes and the edges of a commutative diagram are
labeled, so a commutative diagram is a knowledge graph. For example Fig-
ure 5 specifies that the source and target of an identity morphism are the
object of the identity morphism. In Figure 5 there are three paths from the
upper left corner to the lower right corner. The diagram is commutative
when all three paths yield the same morphism. In other words, when
C.id;C.src = 1C.ob = C.id;C.tar.

85

Winter2021

Figure 5: Example of a commutative diagram

The collection of all sets and functions between them forms a category Set.
If the source and target of every morphism of a categoryC are interchanged,
i.e., the direction of every morphism is reversed, then the result is again a
category which is written Cop.

While a category is a labeled directed graph, the converse is not necessarily
true, since directed graphs do not generally have a composition operation.
However, finite paths in a graph can be composed, and the collection of
nodes and paths of a KG is a category called the path category of the KG.

The collection of all knowledge graphs forms a category KG whose mor-
phisms are functions that preserve edges of the graph. More precisely, a
morphism : → of knowledge graphs G and H is a function
:. → . such that

1. For every ∈ . such that x ∉ Id, we have that f(x)=x,
2. For every ∈ . such that x ∈ Id , we have that ∈ ,
and

3. For every , , , ∈ , we have that , , , ∈
.

A functor F from a category C to a category D, written F: C➞ D, is a pair
of functions

1. F.ob: C.ob➞ D.ob
2. F.hom: C.hom➞ D.hom

such that

a) C.src;F.ob = F.hom;D.src,
b) C.tar;F.ob = F.hom;D.tar,
c) C.id;F.hom = F.ob;D.id, and
d) C.comp;F.hom = (F.hom⨝ F.hom);D.comp.

86

Washington Academy of Sciences

The axioms for a functor can be diagrammed as in Figure 6.

Figure 6: The Functor Axioms

The collection of categories and functors forms a categoryCat. We are now
ready to define an institution (Goguen and R. Burstall, 1983).

An institution ℐ consists of the following:

1. A category Sign whose objects are called signatures.
2. A functor Sen: Sign➞ Set. For a signature Σ, the elements of
Sen(Σ).ob are called the Σ-sentences.

3. A functorMod: Sign➞ Catop. For a signature Σ, the elements of
Mod(Σ).ob are called the Σ-models, and the elements of
Mod(Σ).hom are called the Σ-morphisms.

4. A relation ⊨Σ ⊆Mod(Σ).ob × Sen(Σ).ob, for each Σ ∈ Sign.ob,
called Σ-satisfaction.

The satisfaction relation must satisfy the following axiom:

∀φ:Σ→Ξ ∈ Sign.hom, ∀s ∈ Sen(Σ).ob, ∀ξ ∈Mod(Ξ).ob, ξ ⊨Ξ Sen(φ)(s)
iffMod(φ)(ξ) ⊨Σ s

The KGSQL institution is written , and has the following compo-
nents:

1. The category Sign ofhas a single object and morphism.
Because Sign is a singleton, we omit reference to the unique signa-
ture of.

2. A sentence ofis an ask query, and the functor Sen: Sign
➞ Set maps the unique signature to the set of all ask queries.

87

Winter2021

3. A model ofis a knowledge graph. The functorMod:
Sign➞ Catop maps the unique signature to the category KG.

4. The satisfaction relation ⊨ is the relation {(G,Q)|G is a KG, Q is an
ask query, and ⟦Q⟧G = true}

Now Sign in has only one morphism φ, so it must therefore be an
identity morphism. Consequently, in the satisfaction axiom for ,
Sen(φ) is the identity function of the set of all ask queries, and Mod(φ) is
the identity functor from KG to itself. Therefore, the satisfaction axiom for
simplifies to the following:

∀s ∈ Sen.ob, ∀ξ ∈Mod.ob, ξ ⊨ s iff ξ ⊨ s

which is trivially true. Sois an institution.

Appendix C KGSQL Syntax

grammar KGSQL;

root : command;

command : prologue (selectQuery | askQuery
| constructQuery | insertRequest | deleteRequest);

prologue : prefixDecl*;

prefixDecl : Prefix NamedGraph Identifier;

selectQuery : Select Variable+ whereClause;

askQuery : Ask whereClause;

constructQuery : Construct patternBlock whereClause;

insertRequest : Insert patternBlock whereClause;

deleteRequest : Delete Variable+ whereClause;

whereClause : Where?

88

Washington Academy of Sciences

'{' patternBlock? (filter '.'? patternBlock?)* '}';

patternBlock : patternsSameSubject ('.' patternBlock?)?;

filter : Filter constraint;

patternsSameSubject : (noun | linkedList) predicateList?;

predicateList : verb objectList (';' (verb objectList)?)*;

objectList : object (',' object)*;

object : noun | linkedList;

noun : resourceOrVariable multiplicity?
| '[' resourceOrVariable resourceOrVariable? typeUnion ']' multiplicity?;

verb : typeUnion multiplicity?
| '[' resourceOrVariable typeUnion ']' multiplicity?;

typeUnion : Variable | prefixedName ('|' prefixedName)*;

resourceOrVariable : prefixedName | typedLiteral | numericLiteral
| True | False | Variable;

linkedList : '(' (resourceOrVariable | linkedList)* ')'
| '[' '(' (resourceOrVariable | linkedList)* ')' prefixedName ']';

prefixedName : NamedGraph LocalName;

constraint : '(' expression ')' | LocalName '(' expressionList? ')';

expressionList : expression (',' expression)*;

expression : conditionalAndExpression ('||' conditionalAndExpression)*;

conditionalAndExpression : relationalExpression ('&&' relationalExpres-
sion)*;

relationalExpression : additiveExpression ('=' additiveExpression

89

Winter2021

| '!=' additiveExpression | '<' additiveExpression | '>' additiveExpression
| '<=' additiveExpression | '>=' additiveExpression)?;

additiveExpression : multiplicativeExpression ('+' multiplicativeExpres-
sion
| '-' multiplicativeExpression | NatPositive | NatNegative | RealPositive
| RealNegative)*;

multiplicativeExpression : unaryExpression
('*' unaryExpression | '/' unaryExpression)*;

unaryExpression : primaryExpression | '+' primaryExpression
| '-' primaryExpression | '!' primaryExpression;

primaryExpression : '(' expression ')' | LocalName '(' expressionList? ')'
| resourceOrVariable | askQuery;

typedLiteral : Literal Lang? | '[' Literal Lang? prefixedName ']'
| Literal Lang? '^^' prefixedName;

numericLiteral : Nat | NatPositive | NatNegative | UnsignedReal
| RealPositive | RealNegative;

multiplicity : '{' integer '}' | '{' integer '..' integer '}';

integer : Nat | NatPositive | NatNegative | '*';

// Lexical Scanner Tokens

// In general, KGSQL is case-sensitive,
// but the following reserved words are case-insensitive:

Prefix : [Pp][Rr][Ee][Ff][Ii][Xx] WS;
Select : [Ss][Ee][Ll][Ee][Cc][Tt] WS;
Ask : [Aa][Ss][Kk] WS;
Construct : [Cc][Oo][Nn][Ss][Tt][Rr][Uu][Cc][Tt] WS;
Insert : [Ii][Nn][Ss][Ee][Rr][Tt] WS;
Delete : [Dd][Ee][Ll][Ee][Tt][Ee] WS;
Where : [Ww][Hh][Ee][Rr][Ee];
Filter : [Ff][Ii][Ll][Tt][Ee][Rr];

90

Washington Academy of Sciences

True : [Tt][Rr][Uu][Ee];
False : [Ff][Aa][Ll][Ss][Ee];

// The lexical rules were omitted.
// See kgsql.org/KGSQL.g4 for the full Antlr grammar.

